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Abstract. In this paper we have discussed a boundary 

value problem involving Caputo nonlinear fractional 

integro-differential equations of order 0 <   𝛼  ≤   1 

and 0 <  𝛽 ≤  1 with boundary conditions of the form 

𝑥(0)  =  𝑥(1) = 0. We have proved some new existence 

and uniqueness results by using the fixed point theory. 

In particular, we have used the Banach contraction 

mapping principle and Krasnoselskii’s fixed point 

theorem under some weak conditions. The results 

proved are supported by means of a couple of examples. 
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1. INTRODUCTION: 

 After the wide and successful applicability of 

the theory of differential equations in the fields of 

Applied Mathematics, Mathematical Physics, Chemical 

Sciences, Biological Sciences, Engineering and 

Technology, etc., the theory of fractional calculus has 

attracted the attention of many researchers because of the 

applicability of the derivatives and integrals of the 

fractional order with the corresponding initial and 

boundary conditions. Besides all the fields of sciences 

and technology as mentioned earlier, the theory of 

fractional calculus is being applied to Fluid Dynamics, 

Electromagnetism, Viscoelasticity, the Analysis of the 

Feedback Amplifiers and Capacitors, etc. In last few 

decades, many of the researchers have pointed out that 

the fractional order differentials and integrals are of 

special importance in order to describe the viscoelastic 

properties of the real materials like polymers. In this 

paper, we have considered the existence and uniqueness 

of solutions for the following problem: 

𝐷𝛼𝐷𝛽𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝜙𝑥(𝑡), 𝜓𝑥(𝑡)), 𝑡𝜖[0,1] .  .  . (1) 

𝑥(0) = 𝑥(1) = 0                                                             

where 0 < 𝛼 ≤  1, 0 < 𝛽 ≤  1, 𝐷𝛼 , 𝐷𝛽, are the 

Caputo fractional derivatives of order 𝛼 , 𝛽,  

𝑓 ∶  [0, 1]  ×  𝑅3 ⟶ 𝑅 is a continuous function, and 

𝜙𝑥(𝑡) = ∫ 𝜆(𝑡, 𝑠)𝑥(𝑠)𝑑𝑠
𝑡

0

     .    .      .               (2) 

𝜓𝑥(𝑡) = ∫ 𝛿(𝑡, 𝑠)𝑥(𝑠)𝑑𝑠      .    .      .              (3)
𝑡

0

 

where 𝜆, 𝛿:[0,1]×[0, 1]→[0,+∞) with 

𝜙∗ = 𝑆𝑢𝑝𝑡∈[0,1] |∫ 𝜆(𝑡, 𝑠)𝑑𝑠
𝑡

0

| < ∞      .    .      .   (4) 

𝜓∗ = 𝑆𝑢𝑝𝑡∈[0,1] |∫ 𝛿(𝑡, 𝑠)𝑑𝑠
𝑡

0

| < ∞     .    .      .   (5) 

Before proving the existence of the solution to the 

boundary value problem (1–5), we will take a review of 

the basic definitions and the notions required for the 

understanding of these results in the next section. 

 

2. A REVIEW OF PRELIMINARY CONCEPTS AND 

RESULTS 

 Leibnitz discussed the fractional derivative of 

order 1.5 in his notes to L’Hospital back in the year 

1695. Joseph Fourier in 1822 gave an expression for a 

fractional order derivative[1] obtained from the Fourier 

integral representation of a function in the form 

𝑑𝑢[𝑓(𝑥)]

𝑑𝑥𝑢
=

1

2𝜋
∫ 𝑓(𝛼)𝑑𝛼 ∫ 𝑝𝑢 cos [𝑝(𝑥 − 𝑎)

∞

−∞

∞

−∞

+
𝑢𝜋

2
] 𝑑𝑝 

The first major study of fractional calculus was made by 

Liouville in 1833 who gave two definitions of fractional 

order derivatives as follows. The arbitrary 

derivative 𝐷 𝜈of order 𝜈 of a function 𝑓(𝑥) having 

power series expansion 
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𝑓(𝑥) = ∑ 𝑐𝑛𝑒𝑎𝑛𝑥

∞

𝑛=0

, 𝑅𝑒(𝑎𝑛) > 0 

is given by  

𝐷 𝜈[𝑓(𝑥)] = ∑ 𝑐𝑛𝑎𝑛
𝜈𝑒𝑎𝑛𝑥

∞

𝑛=0

 

Because of the restrictions on the function 𝑓(𝑥), 

Liouville [2] gave his second definition involving the 

gamma function in the form 

𝐷 𝜈𝑥−𝑎 =
(−1)𝜈

Γ(𝑎)
∫ 𝑢𝑎+𝜈−1𝑒−𝑥𝑢 𝑑𝑢

∞

0

 

                              =
(−1)𝜈Γ(𝑎 + 𝜈)

Γ(𝑎)
𝑥−𝑎−𝜈 , 𝑎 > 0 

The second definition given by Liouville is too narrow 

as it applies only to the functions of the form 𝑓(𝑥) =
 𝑥−𝑎, 𝑎 >  0. Using the generalization of the Taylor 

series expansion of a function, Bernhard Riemann[2] 

defined the fractional derivative of order 𝜈 as 

𝐷−𝜈𝑓(𝑥) =
1

Γ(𝜈)
∫ (𝑥 − 𝑡)𝜈−1𝑓(𝑡) 𝑑𝑡 + 𝜓(𝑥)

𝑥

𝑐

 

where Riemann added a complementary function 𝜓(𝑥) 

as the lower limit of the integration 𝑐 was unclear. The 

difficulty in the applicability of the Riemann’s 

definition was pointed out by A. Cayley since it was 

unclear what will be the meaning of the 

complementary function 𝜓(𝑥) if 𝜓(𝑥) has an infinite 

arbitrary constants. 

 As a modern approach towards defining the 

fractional order derivative, we use the Riemann-

Liouville definition of the fractional order derivative of 

a function 𝑓(𝑡) defined on the closed interval [𝑎, 𝑡] and 

having the (𝑚 +  1)th continuous derivative 

𝑓(𝑚+1)(𝑡). The Riemann-Liouville derivative [2, 3, 4, 

5] of fractional order 𝛼 is given by 

𝐷𝑡
𝑝[𝑓(𝑡)] =

d(m+1)

dt(m+1)
∫(𝑡 − 𝜏)(𝑚−𝑝) 𝑓(𝜏) 𝑑𝜏

𝑡

𝑎

 

where 𝑚 ≤ 𝑝 < 𝑚 + 1. The initial value problem 

involving Riemann-Liouville fractional derivative are 

practically not useful as there is no physical 

interpretation of such types of initial conditions. 

 The general approach suggested by M. Caputo 

is useful for the formulation of initial value problems 

involving the fractional differential and integral 

equations. Caputo’s definition [2] of the derivative of 

fractional order 𝛼 is given by  

𝐷𝑡
𝛼

𝑎
𝐶 [𝑓(𝑡)] =

1

Γ(𝛼 − 𝑛)
∫

𝑓(𝑛)(𝜏)

(𝑡 − 𝜏)𝛼+1−𝑛
 𝑑𝜏

𝑡

𝑎

 

It is clear that as 𝛼 → 𝑛, the the Caputo’s definition 

becomes the conventional definition of the 𝑛th order 

𝑓(𝑛)(𝑡). The main advantage of Caputo’s definition 

is that the initial conditions for the fractional differential 

equations with Caputo derivatives take on the same form 

as the integer order differential equations. We make a 

slight change in the notation for Caputo fractional 

derivative and define the Caputo derivative of order 

𝛼 >  0 with the lower limit zero for a function 𝑓 as 

𝐷𝛼𝑓(𝑡) =
1

Γ(𝑛 − 𝛼)
∫ (𝑡 − 𝜏)𝑛−𝛼−1𝑓(𝑛)(𝜏) 𝑑𝜏

𝑡

𝑎

 

where 𝑛 is a positive integer, 0 ≤  𝑛 −  1 <  𝛼 <  𝑛 

and 𝑡 >  0. The fractional integral of order 𝛼 >  0 with 

the lower limit zero for a function 𝑓 is defined as  

𝐼𝛼𝑓(𝑡) =
1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝑓(𝜏) 𝑑𝜏

𝑡

0

 

In [6], by the application of Krasnoselskii Fixed point 

theorem, Agarwal et al. have proved the existence of at 

least one solution to the initial value problem of 

fractional neural functional differential equation given 

by 

𝐷𝐶
𝛼[𝑥(𝑡) − 𝑓(𝑡, 𝑥𝑡)] = 𝑓(𝑡, 𝑥𝑡), 𝑡 ∈ (𝑡0, ∞), 𝑡0 ≥ 0 

𝑥𝑡0
= 𝜙 

where 𝐷𝐶
𝛼 is the Caputo fractional derivative of order 𝛼,  

0 <  𝛼 <  1, 𝑓 and 𝑔 are functions defined on [𝑡0, 1) ×
𝐶([−𝑟, 0],   𝑅𝑛) → 𝑅𝑛 , 𝜙 ∈  𝐶([−𝑟, 0], 𝑅𝑛), 𝑎 > 0. 

In [7], Fang Li has proved the existence and uniqueness 

of mild solutions in a Banach space 𝑋 for the fractional 

differential equation of the form 

𝑑𝑞

𝑑𝑡𝑞
[𝑥(𝑡)] = −𝐴 𝑥(𝑡) + 𝑓(𝑡, 𝑥(𝑡), 𝐺𝑥(𝑡)),

𝑡 ∈ [0, 𝑇] 

under the conditions 

𝑥(0) +  𝑔(𝑥) =  𝑥0 , 0 <  𝑞 <  1, 𝑇 >  0 

where it is  assumed that −𝐴 generates an analytic semi-

group  {𝑠𝑡}𝑡≥0 of uniformly bounded linear operators on 

the space 𝑋, the operator 𝐺𝑥(𝑡) is 

defined by 
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𝐺 𝑥(𝑡) = ∫ 𝑘(𝑡, 𝑠) 𝑥(𝑠) 𝑑𝑠

𝑡

0

 

where 𝐾 is a positive function defined on the set 𝐷 =
{ (𝑡, 𝑠)  ∈  𝑅2 ∶ 0 ≤  𝑠 ≤  𝑡 ≤  𝑇} and 

𝐺∗ = sup 
𝑡∈[0,   𝑇]

∫ 𝑘(𝑡, 𝑠)  𝑑𝑠

𝑡

0

< ∞ 

Ahmad et al.[8, 9], have obtained the solutions of the 

integrodifferential equations with non-local four point 

and strip multipoint boundary conditions. Wang et al. in 

[10] have established the conditions for the uniqueness 

and existence of the positive solutions of the fractional 

integrodifferential equation 

𝐷𝛼𝑢(𝑡) + 𝑓(𝑡, 𝑢(𝑡), 𝑇𝑢(𝑡), 𝑆𝑢(𝑡)) = 0, 0 < 𝑡 < 1 

under the boundary conditions given by 

𝑢(0) = 𝑢0, 𝑢′(0) =  𝑏1, … , 𝑢(𝑛−3)(0)

= 𝑏𝑛−3, 𝑢(𝑛−2)(0) = 𝑏𝑛−2, 𝑢(𝑛−1)(0)
= 𝑏𝑛−1  

where 𝑛 − 1 <  𝛼 ≤  𝑛, 0 ≤  µ <  𝑛 − 1, 𝑛 ≥  3,
𝑏𝑖 ≥  0 (𝑖 =  1, 2, … , 𝑛 − 3, 𝑛 − 2, 𝑛 − 1),  𝐷𝛼  

being the Caputo fractional derivative of order 𝛼, 𝑓 is a 

continuous function from [0, 1]  ×  𝑅3 + 𝑅+
3  → 𝑅+,  𝑇 

and 𝑆 are defined by 

(𝑇𝑥)(𝑡) = ∫ 𝐾(𝑡, 𝑠) 𝑥(𝑠) 𝑑𝑠,     (𝑆𝑥)(𝑡)

1

0

 

               = ∫ 𝐻(𝑡, 𝑠) 𝑥(𝑠) 𝑑𝑠   

1

0

 

𝐾∗ = sup 
𝑡∈[0,   1]

∫ 𝐾(𝑡, 𝑠)  𝑑𝑠

𝑡

0

,   

𝐻∗ = sup 
𝑡∈[0,   1]

∫ 𝐻(𝑡, 𝑠)  𝑑𝑠

𝑡

0

 

where  𝐾 ∈ 𝐶(𝐷, 𝑅+), 𝐻 ∈ 𝐶([0, 1] ×  [0, 1], 𝑅+). 

Many more others like Hilal et al. 

[11, 12] also have obtained the results stating the 

existence and uniqueness of the solutions of the 

fractional integro-differential equations under different 

boundary conditions. In [13], A. Bragdi et al. obtained 

the solution of the BVP given by  

𝐷𝛼(𝐷𝛽)𝑢(𝑡) = 𝑓(𝑡, 𝑢(𝑡), 𝜙𝑢(𝑡), 𝜓𝑢(𝑡)) 

under the boundary conditions given by 

𝑢(1) = 𝑢(0) =  𝑢′(0) = 0  

where it is assumed that 1 <  𝛼 ≤  2, 0 <  𝛽 ≤  1,
𝑓 ∶  𝐼 ×  𝑅3  → 𝑅, 𝐼 = [0,   1], the function 𝑓 is 

continuous and  

𝜙(𝑢)(𝑡) = ∫ 𝛾(𝑡, 𝑠)𝑢(𝑠)  𝑑𝑠,    

𝑡

0

𝜓(𝑢)(𝑡) 

                = ∫ 𝜆(𝑡, 𝑠)𝑢(𝑠)  𝑑𝑠  

𝑡

0

 

  𝑠𝑢𝑝 ∫ 𝜆(𝑡, 𝑠)  𝑑𝑠

1

0

< ∞, 𝑠𝑢𝑝 ∫ 𝛾(𝑡, 𝑠)  𝑑𝑠

1

0

< ∞ 

where  𝛾, 𝜆 ∶  𝐼 × 𝐼 →  [0, 1) 

In [14], Ibnelazyz L et al. have explored the existence 

and uniqueness for a nonlinear fractional integro-

differential equations with integral and anti-periodic 

boundary conditions where the existence is proved by 

means of Krasnoselskii’s fixed point theorem and the 

uniqueness of solutions is established via the Banach’s 

contraction principle. In [15], M. J. Mardanov et al. have 

obtained the unique solution for the BVP  

𝐷0+
𝛼  𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝜙 𝑥(𝑡), 𝜓 𝑥(𝑡)), 𝑡 ∈ [0, 𝑇] 

under the boundary conditions described by 

𝐴𝑥(0) = ∫ 𝑛(𝑡)𝑥(𝑡)𝑑𝑡 = 𝐶

𝑇

0

 

where 0 <  𝛼 <  1, 𝐷0+
𝛼   is the Caputo fractional 

derivative of order 𝛼, 𝐴 ∈ 𝑅𝑛×𝑛 , 𝑛(𝑡) is a function  

[0, 𝑇] → 𝑅𝑛×𝑛. The other terms are defined by  

𝑁 = 𝐴 + ∫ 𝑛(𝑡)𝑑𝑡 , 𝑑𝑒𝑡(𝑁)

𝑇

0

≠ 0 

𝜙(𝑥)(𝑡) = ∫ 𝜆(𝑡, 𝑠)𝑥(𝑠)𝑑𝑠

𝑡

0

,   𝜓(𝑥)(𝑡)

= ∫ 𝛾(𝑡, 𝑠)𝑥(𝑠)𝑑𝑠

𝑇

0

 

where 

µ, 𝜆: [0, 𝑇] × [0, 𝑇] →  𝑅𝑛×𝑛,  
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µ
0

 =  𝑚𝑎𝑥 ||µ(𝑡, 𝑠)||, 𝜆0  =  𝑚𝑎𝑥 ||µ(𝑡, 𝑠)||,

𝑡, 𝑠 ∈  [0, 𝑇]  

 3. MAIN RESULTS 

 In this section we will prove the existence of 

the solution of the initial value problem (1-5). First we 

mention some of the important results required. 

 Theorem 1. [16] Let Ω be a  closed, convex, and 

bounded nonempty subset of a Banach space 𝑋. Let 𝐴 

and 𝐵 be two operators such that 

(i) 𝐴𝑥 +  𝐵𝑦 ∈ Ω whenever 𝑥, 𝑦 ∈ Ω  

(ii) 𝐴 is compact and continuous 

(iii) 𝐵 is a contraction mapping 

Then, there exists 𝑧 ∈ Ω such that 𝑧 =  𝐴𝑧 +  𝐵𝑧. 

Theorem 2.  [3] Let 𝛼, 𝛽 ≥ 0.Then the following 

relation hold 

𝐼𝛼𝑡𝛽 =
Γ(𝛽 + 1)

Γ(𝛼 + 𝛽 + 1)
𝑡𝛼+𝛽 

Theorem 3. [3] Let 𝑛 be a positive integer and  𝑛 − 1 <
𝛼 < 𝑛.  If  𝑓 is a continuous function then we have  

𝐼𝛼𝐷𝛼[𝑓(𝑡)] = 𝑓(𝑡) + 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + ⋯
+ 𝑎𝑛−1𝑡𝑛−1 

Theorem 4. Let 𝑓 ∈ 𝐶([0, 1], 𝑅) then the unique 

solution to the initial value  Problem  

𝐷𝛼𝐷𝛽𝑥(𝑡) = 𝑓(𝑡), 𝑡𝜖[0,1] 

𝑥(0) = 𝑥(1) = 0 

is given by 

𝑥(𝑡) =
1

𝛤(𝛼 + 𝛽)
∫ (𝑡 − 𝜏)𝛼+𝛽−1𝑓(𝜏)𝑑𝜏

𝑡

0

−
𝑡𝛽

𝛤(𝛼 + 𝛽)
∫ (1 − 𝜏)𝛼+𝛽−1

1

0

𝑓(𝜏)𝑑𝜏 

Proof: By applying theorem 3,  we have 

𝐷𝛽𝑥(𝑡) = 𝐼𝛼𝑓(𝑡) + 𝑎0 

𝑥(𝑡) = 𝐼𝛼+𝛽𝑓(𝑡) + 𝐼𝛽𝑎0 + 𝑎1 

where 𝑎0, 𝑎1 ∈ 𝑅. 

Hence 

𝑥(𝑡) =
1

𝛤(𝛼 + 𝛽)
∫ (𝑡 − 𝜏)𝛼+𝛽−1𝑓(𝜏)𝑑𝜏

𝑡

0

+
𝑡𝛽

𝛤(𝛽 + 1)
𝑎0 + 𝑎1 

and by using the condition 𝑥(0) = 0, we obtain 𝑎1 = 0 

and by using 𝑥(1) = 0 we get  

𝑎0 = −
Γ(𝛽 + 1)

Γ(𝛼 + 𝛽)
∫ (1 − 𝑠)𝛼+𝛽−1𝑓(𝜏)𝑑𝜏

1

0

 

By substituting the value of 𝑎0, we get 

𝑥(𝑡) =
1

𝛤(𝛼+𝛽)
∫ (𝑡 − 𝜏)𝛼+𝛽−1𝑓(𝜏)𝑑𝜏 −

𝑡𝛽

𝛤(𝛼+𝛽)

𝑡

0
∫ (1 −

1

0

𝜏)𝛼+𝛽−1 𝑓(𝜏)𝑑𝜏. 

The converse can be easily verified by direct 

computations.                                                    ∎ 

Theorem 5. (Main Result: Existence of the Solution) 

Let 𝑋 be the Banach space of all continuous function 

from [0, 1] → 𝑅 induced with the norm  

‖𝑦‖ = 𝑠𝑢𝑝𝑡∈[0,1] {|𝑦(𝑡)|: 𝑡 ∈ [0, 1] and ‖𝑦‖𝜇 =

𝑠𝑢𝑝𝑡∈[0,1] (
𝑦(𝑡)

𝑒𝜇𝑡 ) 

where 𝜇 > (1 + 𝜙∗ + 𝜓∗)Γ(𝛼 + 𝛽))‖𝜎‖, 𝜎 ∈

𝐶([0, 1]; [0, ∞)). 

Suppose that  

1.  |𝑓(𝑡, 𝑥1, 𝑥2 , 𝑥3,) − 𝑓(𝑡, 𝑦1, 𝑦2 , 𝑦3,)| 

    ≤ 𝜎(𝑡)(|𝑥1 − 𝑦1| + |𝑥2 − 𝑦2| + |𝑥3 − 𝑦3|)  

for all  𝑡 ∈ [0, 1]   and 𝑥1, 𝑥2 , 𝑥3,𝑦1, 𝑦2 , 𝑦3 ∈ 𝑅. 

2. |𝑓(𝑡, 𝑥, 𝑦 , 𝑧)| ≤ 𝑘(𝑡)  

 ∀ (𝑡, 𝑥, 𝑦, 𝑧) ∈ [0,1] × 𝑅3 ,   𝑘 ∈ 𝐶([0,1]; 𝑅+) 

Then the initial value problem (1-5) has at least one 

solution. 

Proof: Consider an 𝜖-sphere  𝐵𝜖 = {𝑦 ∈ 𝑋: ‖𝑦‖𝜇 ≤ 𝜖} 

with  

𝜖 ≥
‖𝑘‖

𝜇
 (

𝑒𝜇 − 1

Γ(𝛼 + 𝛽)
) +

1

Γ(𝛼 + 𝛽)
 

We define two  operators  𝐴 and 𝐵 on 𝐵𝜖 by the 

relations 
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𝐴𝑥(𝑡) =
1

Γ(𝛼 + 𝛽)
× 

∫ (𝑡 − 𝜏)𝛼+𝛽−1𝑓(𝜏, 𝑥(𝜏), 𝜙𝑥(𝜏), 𝜓𝑥(𝜏)) 𝑑𝜏
𝑡

0

  

𝐵𝑦(𝑡) = −
𝑡𝛽

Γ(𝛼 + 𝛽)
× 

∫ (1 − 𝜏)𝛼+𝛽−1𝑓(𝜏, 𝑥(𝜏), 𝜙𝑥(𝜏), 𝜓𝑥(𝜏)) 𝑑𝜏
1

0

 

For 𝑥, 𝑦 ∈ 𝐵𝜖 , we have  

‖𝐴𝑥(𝑡)‖
𝜇

≤ 𝑠𝑢𝑝𝑡∈[0,1]

1

𝑒𝜇𝑡
|

1

Γ(𝛼 + 𝛽)

× ∫ (𝑡 − 𝜏)𝛼+𝛽−1𝑓(𝜏, 𝑥(𝜏), 𝜙𝑥(𝜏), 𝜓𝑥(𝜏)) 𝑑𝜏
𝑡

0

| 

 ≤ 𝑠𝑢𝑝𝑡∈[0,1]

1

𝑒𝜇𝑡

1

Γ(𝛼 + 𝛽)
∫ (𝑡 − 𝜏)𝛼+𝛽−1|𝑘(𝜏)|𝑑𝜏

𝑡

0

 

 ≤ 𝑠𝑢𝑝𝑡∈[0,1]

1

𝑒𝜇𝑡

1

Γ(𝛼 + 𝛽)
× 

∫ (𝑡 − 𝜏)𝛼+𝛽−1|𝑘(𝜏)|
𝑒𝜇𝜏

𝑒𝜇𝜏
𝑑𝜏

𝑡

0

 

≤ 𝑠𝑢𝑝𝑡∈[0,1]

1

𝑒𝜇𝑡

‖𝑘‖𝜇

Γ(𝛼 + 𝛽)
∫ (𝑡 − 𝜏)𝛼+𝛽−1𝑒𝜇𝜏𝑑𝜏

𝑡

0

 

 ≤ 𝑠𝑢𝑝𝑡∈[0,1]

1

𝑒𝜇𝑡

‖𝑘‖𝜇

Γ(𝛼 + 𝛽)
∫ 𝑒𝜇𝜏𝑑𝜏

𝑡

0

 

≤ 𝑠𝑢𝑝𝑡∈[0,1]

1

𝑒𝜇𝑡

‖𝑘‖𝜇

Γ(𝛼 + 𝛽)

𝑒𝜇𝑡 − 1

𝜇
 

≤ 𝑠𝑢𝑝𝑡∈[0,1]

1

𝜇

‖𝑘‖𝜇

Γ(𝛼 + 𝛽)

𝑒𝜇𝑡 − 1

𝑒𝜇𝑡
 

≤
1

𝜇

‖𝑘‖𝜇

Γ(𝛼 + 𝛽)
 

Also, we have  

‖𝐵𝑦(𝑡)‖
𝜇

≤  𝑠𝑢𝑝𝑡∈[0,1]

1

𝑒𝜇𝑡
|−

𝑡𝛽

Γ(𝛼 + 𝛽)

× ∫ (1 − 𝜏)𝛼+𝛽−1𝑓(𝜏, 𝑥(𝜏), 𝜙𝑥(𝜏), 𝜓𝑥(𝜏)) 𝑑𝜏
1

0

| 

                   

≤ 𝑠𝑢𝑝𝑡∈[0,1]

1

𝑒𝜇𝑡
|

𝑡𝛽

Γ(𝛼 + 𝛽)

× ∫ (1 − 𝜏)𝛼+𝛽−1𝑓(𝜏, 𝑥(𝜏), 𝜙𝑥(𝜏), 𝜓𝑥(𝜏))𝑑𝜏
1

0

| 

≤ 𝑠𝑢𝑝𝑡∈[0,1]

1

𝑒𝜇𝑡

1

Γ(𝛼 + 𝛽)
∫ (1 − 𝜏)𝛼+𝛽−1𝑘(𝜏)

𝑒𝜇𝜏

𝑒𝜇𝜏
𝑑𝜏

1

0

 

≤ 𝑠𝑢𝑝𝑡∈[0,1]

1

𝑒𝜇𝑡

‖𝑘‖𝜇

Γ(𝛼 + 𝛽)
∫ (1 − 𝜏)𝛼+𝛽−1𝑒𝜇𝜏𝑑𝜏

1

0

 

≤ 𝑠𝑢𝑝𝑡∈[0,1]

1

𝑒𝜇𝑡

‖𝑘‖𝜇

Γ(𝛼 + 𝛽)
∫ 𝑒𝜇𝜏𝑑𝜏

1

0

 

≤ 𝑠𝑢𝑝𝑡∈[0,1]

1

𝑒𝜇𝑡

‖𝑘‖𝜇

Γ(𝛼 + 𝛽)

𝑒𝜇 − 1

𝜇
 

≤
‖𝑘‖𝜇

𝜇

𝑒𝜇 − 1

Γ(𝛼 + 𝛽)
 

Therefore  

‖𝐴𝑥(𝑡) + 𝐵𝑥(𝑡)‖
𝜇

≤
‖𝑘‖𝜇

𝜇
 [

𝑒𝜇 − 1

Γ(𝛼 + 𝛽)
+

1

Γ(𝛼 + 𝛽)
]  

This proves that  𝑥𝐴 + 𝑦𝐵 ∈ 𝐵𝜖. 

Now we prove that 𝐴  is a contraction mapping. For 

𝑥, 𝑦 ∈ 𝐵𝜖, we have  

‖𝐴𝑦(𝑡) − 𝐴𝑥(𝑡)‖
𝜇

 

≤ sup
1

Γ(𝛼 + 𝛽)𝑒𝜇𝑡
∫ (𝑡 − 𝜏)𝛼+𝛽−1

𝑡

0

 

  × |𝑓(𝜏, 𝑦(𝜏), 𝜙𝑦(𝜏), 𝜓𝑦(𝜏))

− 𝑓(𝜏, 𝑥(𝜏), 𝜙𝑥(𝜏), 𝜓𝑥(𝜏))|𝑑𝜏 

≤ sup
1

Γ(𝛼 + 𝛽)𝑒𝜇𝑡
∫ (𝑡 − 𝜏)𝛼+𝛽−1

𝑡

0

 

× 𝜎(𝜏)[ |𝑦(𝜏) − 𝑥(𝜏)| + |𝜙𝑦(𝜏) − 𝜙𝑥(𝜏)|
+ |𝜓𝑦(𝜏) − 𝜓𝑥(𝜏)|] 𝑑𝜏 

≤ 𝑠𝑢𝑝𝑡∈[0,1]

‖𝜎‖

Γ(𝛼 + 𝛽)𝑒𝜇𝑡
∫ 𝑒𝜇𝜏

𝑡

0

[‖𝑦 − 𝑥‖𝜇

+ 𝜙∗‖𝑦 − 𝑥‖𝜇 + 𝜓∗‖𝑦 − 𝑥‖𝜇]𝑑𝜏 

≤ 𝑠𝑢𝑝𝑡∈[0,1]

(1 + 𝜙∗ + 𝜓∗)‖𝜎‖

Γ(𝛼 + 𝛽)
 
𝑒𝜇𝑡 − 1

𝑒𝜇𝑡
 [‖𝑦 − 𝑥‖𝜇] 
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≤ 𝑠𝑢𝑝𝑡∈[0,1]

(1 + 𝜙∗ + 𝜓∗)‖𝜎‖

Γ(𝛼 + 𝛽)
  [‖𝑦 − 𝑥‖𝜇] 

From the definition of the new norm, we conclude that 

𝐴  is a contraction mapping. Moreover, the continuity of 

the function 𝑓 implies that 𝐵 is compact and continuous. 

Also 𝐵 is uniformly bounded on 𝐵𝜖 since 

‖𝐵𝑦(𝑡)‖
𝜇

≤
‖𝑘‖𝜇

𝜇
 

𝑒𝜇 − 1

Γ(𝛼 + 𝛽)
 

Suppose that 0 ≤ 𝑡1 ≤ 𝑡2 ≤ 1. Then we have 

|𝐵𝑦(𝑡2) − 𝐵𝑦(𝑡1)|

≤
|𝑡2

𝛽 − 𝑡1
𝛽|

Γ(𝛼 + 𝛽)

× ∫ (1 − 𝜏)𝛼+𝛽−1𝑓(𝜏, 𝑥(𝜏), 𝜙𝑥(𝜏), 𝜓𝑥(𝜏))𝑑𝜏
1

0

 

As 𝑡1 → 𝑡2 independently, we conclude that 

 |𝐵𝑦(𝑡2) − 𝐵𝑦(𝑡1)| → 0 since  𝑦 ∈ 𝐵𝜖. 

This shows that the operator 𝐵 is relatively  Compact on 

𝐵𝜖. Thus, by the Arzela Ascoli theorem[17], we 

conclude that 𝐵  is compact on 𝐵𝜖. By the Krasnoselskii 

fixed point theorem[17, 18], it follows that the initial 

value problem (1-5) has at least one solution on 𝐵𝜖. 

Theorem 6. (Main Result: Uniqueness of the 

Solution) 

Suppose that 𝑓: [0, 1] × 𝑅3 → 𝑅 is a continuous 

function satisfying 

|𝑓(𝑡, 𝑥1, 𝑥2 , 𝑥3,) − 𝑓(𝑡, 𝑦1, 𝑦2 , 𝑦3,)| 

≤ 𝜎(𝑡)(|𝑥1 − 𝑦1| + |𝑥2 − 𝑦2| + |𝑥3 − 𝑦3|) 

∀ 𝑡 ∈ [0, 1], 𝑥1, 𝑥2 , 𝑥3,𝑦1, 𝑦2 , 𝑦3, ∈ 𝑅,   

𝜎(𝑡) ∈ (𝐿1[0,1]; [0, ∞)) 

Then there exists a unique solution for the problem (1-

5) for  

𝑟1 < 1, 𝑟1 = 2(1 +  𝜙∗ + 𝜓∗)𝜎∗ [
1

Γ(𝛼 + 𝛽)
] 

where 

  𝜎∗ = ∫ 𝜎(𝑡)𝑑𝑡
1

0

 

Proof. Define an operator  𝐴 on 𝑋 by 

𝐴[𝑥(𝑡)]

=
1

Γ(𝛼 + 𝛽)

× ∫ (𝑡 − 𝜏)𝛼+𝛽−1𝑓(𝜏, 𝑥(𝜏), 𝜙𝑥(𝜏), 𝜓𝑥(𝜏))𝑑𝜏
𝑡

0

−
𝑡𝛽

Γ(𝛼 + 𝛽)

× ∫ (1 − 𝜏)𝛼+𝛽−1
1

0

𝑓(𝜏, 𝑥(𝜏), 𝜙𝑥(𝜏), 𝜓𝑥(𝜏))𝑑𝜏 

Let us denote  𝑠𝑢𝑝0≤𝑡≤1|𝑓(𝑡, 0,0,0)| = 𝑓0, 

and consider the sphere 𝐵𝑟 = {𝑥 ∈ 𝑋: ‖𝑥‖ ≤ 𝑟} where 

𝑟 > (
𝑟2

1 − 𝑟1

) , 𝑟2 =
2𝑓0

Γ(𝛼 + 𝛽)
 

For each 𝑡 ∈ [0, 1]𝑎𝑛𝑑 𝑥 ∈ 𝐵𝑟 , we have 

|𝐴[𝑥(𝑡)]|

≤
1

Γ(𝛼 + 𝛽)

× ∫ (𝑡 − 𝜏)𝛼+𝛽−1|𝑓(𝜏, 𝑥(𝜏), 𝜙𝑥(𝜏), 𝜓𝑥(𝜏))|𝑑𝜏
𝑡

0

+
𝑡𝛽

Γ(𝛼 + 𝛽)

× ∫ (1 − 𝜏)𝛼+𝛽−1|𝑓(𝜏, 𝑥(𝜏), 𝜙𝑥(𝜏), 𝜓𝑥(𝜏))|𝑑𝜏
1

0

 

≤
1

Γ(𝛼 + 𝛽)

× ∫ (𝑡 − 𝜏)𝛼+𝛽−1{|𝑓(𝜏, 𝑥(𝜏), 𝜙𝑥(𝜏), 𝜓𝑥(𝜏))
𝑡

0

− 𝑓(𝜏, 0,0,0)| + |𝑓(𝜏, 0,0,0)|}𝑑𝜏 +
𝑡𝛽

Γ(𝛼 + 𝛽)

× ∫ (1 − 𝜏)𝛼+𝛽−1{|𝑓(𝜏, 𝑥(𝜏), 𝜙𝑥(𝜏), 𝜓𝑥(𝜏))
1

0

− 𝑓(𝜏, 0,0,0)| + |𝑓(𝜏, 0,0,0)|}𝑑𝜏 

≤
1

Γ(𝛼 + 𝛽)
× 

∫ (𝑡 − 𝜏)𝛼+𝛽−1{𝜎(𝜏)(|𝑥(𝜏)| + |𝜙𝑥| + |𝜓𝑥|) − 𝑓0}𝑑𝜏
𝑡

0

 

+
𝑡𝛽

Γ(𝛼 + 𝛽)
 

× ∫ (1 − 𝜏)𝛼+𝛽−1(𝜎(𝜏)(|𝑥| + |𝜙𝑥| + |𝜓𝑥|) + 𝑓0)𝑑𝜏
1

0
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≤
(1 + 𝜙∗ + 𝜓∗)‖𝑥‖

Γ(𝛼 + 𝛽)
∫ 𝜎(𝜏)𝑑𝜏

1

0

 

+
𝑓0

Γ(𝛼 + 𝛽)
∫ (𝑡 − 𝜏)𝛼+𝛽−1

𝑡

0

𝑑𝜏 

+
(1 + 𝜙∗ + 𝜓∗)‖𝑥‖

Γ(𝛼 + 𝛽)
∫ 𝜎(𝜏)𝑑𝜏

1

0

+
𝑓0

Γ(𝛼 + 𝛽)
 

≤
(1 + 𝜙∗ + 𝜓∗)‖𝑥‖

Γ(𝛼 + 𝛽)
𝜎∗ 

+
𝑓0

Γ(𝛼 + 𝛽)
∫ (𝑡 − 𝜏)𝛼+𝛽−1

𝑡

0

𝑑𝜏 

+
(1 + 𝜙∗ + 𝜓∗)‖𝑥‖𝜎∗

Γ(𝛼 + 𝛽)
+

𝑓0

Γ(𝛼 + 𝛽)
 

≤
2(1 + 𝜙∗ + 𝜓∗)‖𝑥‖

Γ(𝛼 + 𝛽)
𝜎∗ +

2𝑓0

Γ(𝛼 + 𝛽)
 

This indicates that  ‖𝐴[𝑥(𝑡)]‖ ≤ 𝑟. 

Therefore,𝐹𝐴 ⊆ 𝐵𝑟 . Now we show that 𝐴 is a 

contraction mapping, 

For 𝑥, 𝑦 ∈ 𝐵𝑟 , we have  

|𝐴𝑥(𝑡) − 𝐴𝑦(𝑡)| 

≤
1

Γ(𝛼 + 𝛽)
∫ (𝑡 − 𝜏)𝛼+𝛽−1|𝑓(𝜏, 𝑥(𝜏), 𝜙𝑥(𝜏), 𝜓𝑥(𝜏))

𝑡

0

− 𝑓(𝜏, 𝑦(𝜏), 𝜙𝑦(𝜏), 𝜓𝑦(𝜏))|𝑑𝜏 

+
𝑡𝛽

Γ(𝛼 + 𝛽)
∫ (𝑡 − 𝜏)𝛼+𝛽−1|𝑓(𝜏, 𝑥(𝜏), 𝜙𝑥(𝜏), 𝜓𝑥(𝜏))

1

0

− 𝑓(𝜏, 𝑦(𝜏), 𝜙𝑦(𝜏), 𝜓𝑦(𝜏))|𝑑𝜏 

≤
1

Γ(𝛼 + 𝛽)
∫ (𝑡 − 𝜏)𝛼+𝛽−1𝜎(𝜏){|𝑥(𝜏) − 𝑦(𝜏)|

𝑡

0

 

+|𝜙𝑥(𝜏) − 𝜙𝑦(𝜏)| + |𝜓𝑥(𝜏) − 𝜓𝑦(𝜏)|}𝑑𝜏 

+
𝑡𝛽

Γ(𝛼 + 𝛽)
∫ (𝑡 − 𝜏)𝛼+𝛽−1𝜎(𝜏){|𝑥(𝜏) − 𝑦(𝜏)|

1

0

 

+|𝜙𝑥(𝜏) − 𝜙𝑦(𝜏)| + |𝜓𝑥(𝜏) − 𝜓𝑦(𝜏)|}𝑑𝜏 

≤
(1 + 𝜙∗ + 𝜓∗)𝜎∗‖𝑥 − 𝑦‖

Γ(𝛼 + 𝛽)
 

+
(1 + 𝜙∗ + 𝜓∗)𝜎∗‖𝑥 − 𝑦‖

Γ(𝛼 + 𝛽)
 

≤
2(1 + 𝜙∗ + 𝜓∗)𝜎∗‖𝑥 − 𝑦‖

Γ(𝛼 + 𝛽)
 

Since 𝑟1 < 1, it follows that 𝐴 is a contraction. This 

proves that  the system (1-5) has a unique solution. 

 

4. ILLUSTRATIVE EXAMPLES 

From theorems 5 and 6, we have proved the existence 

and the uniqueness of the solutions to the initial value 

problem (1-5). Now in this section, we will present here 

a couple of examples that support our results. 

Example1. Consider the initial value problem  

𝐷
1
4[𝐷

3
4]𝑥(𝑡)

=
𝑡3

400
[

|𝑥(𝑡)𝑒−𝑡|

1 + |𝑥(𝑡)|
]

+ ∫
(𝑡 + 𝜏)3|𝑥(𝜏)|[cos 𝜏 + sin 𝜏]

400[1 + |𝑥(𝜏)|]

𝑡

0

 .  .  .  (6) 

under the initial conditions 𝑥(0) = 𝑥(1) = 0, 𝑡 ∈
[0, 1] 

Here  𝛼 =
1

4
, 𝛽 =

3

4
 and 

  𝑓(𝑡, 𝑥, 𝑦, 𝑧) 

=
𝑡3

400
[

|𝑥(𝑡)|𝑒−𝑡

1 + |𝑥(𝑡)|
+

|𝑦(𝑡)| cos t

1 + |𝑦(𝑡)|
+

|𝑧(𝑡)| sin t

1 + |𝑧(𝑡)|
] 

𝜆(𝑡, 𝑠) =  𝛿(𝑡, 𝑠) =
(𝑡 + 𝑠)3

400
, 𝜎(𝑡) =

𝑡3

400
,

𝑘(𝑡) =
3𝑡3

400
 

From the definitions of 𝜙∗ and 𝜓∗, it can be easily 

verified that  

𝜙∗ = 𝜓∗ =
15

1600
, 𝜎∗ =

1

1600
 

Hence by existence theorem 5, we conclude that the 

initial value problem (6) has at least one solution. 

Example2. Consider the initial value problem 

𝐷
1
4 (𝐷

3
4) 𝑥(𝑡) 

=
𝑡2

200
[

1

1 + |𝑥(𝑡)|
+

1

100
∫ 𝑡4𝜏3𝑥(𝜏) 𝑑𝜏

𝑡

0

]   

under the conditions 𝑥(0) = 𝑥(1) = 0, 𝑡 ∈ [0, 1] 
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Here 

   𝛼 =
1

4
, 𝛽 =

3

4
 

Also,  

𝑓(𝑡, 𝑥, 𝑦, 𝑧) =
𝑡2

200
[

1

1 + |𝑥(𝑡)|
+ |𝑦(𝑡)| + |𝑧(𝑡)|] 

𝜆(𝑡, 𝜏) =  𝛿(𝑡, 𝜏) =
𝑡4𝜏3

200
, 𝜎(𝑡) =

𝑡2

200
 

 

Using the definitions of 𝜙∗, 𝜓∗ and  𝜎∗, it  is clear that  

𝜙∗ = 𝜓∗ =
1

800
, 𝜎∗ =

1

600
 

Calculating the value of 𝑟1, we have   

 𝑟1 = 2(1 + 𝜙∗ + 𝜓∗)𝜎∗ [
1

Γ(𝛼 + 𝛽)
] 

This gives 𝑟1 ≈ 0.0033. By theorem 6, we conclude 

that the initial value problem (7) has a unique solution. 
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